- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Marsh, Zachary_M (2)
-
Stefik, Morgan (2)
-
Abdou, John_P (1)
-
Armas, Jeremy_A (1)
-
Ayala, Denzel (1)
-
Bilger, David_W (1)
-
Blom, Douglas_A (1)
-
Cronin, Adam_D (1)
-
Del_Aguila, Jeremy (1)
-
Fernández‐Blázquez, Juan_P (1)
-
Fideldy, Rikki (1)
-
Reynolds, Karina_J (1)
-
Scott, Gregory_E (1)
-
Vilatela, Juan_J (1)
-
Zhang, Shanju (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The controlled placement of nanoparticles (NPs) within homopolymers and block polymers is of broad interest for functional nanomaterials. This manuscript focuses on small molecule‐stabilized NPs that bring a large fraction of functionality. For such NP mixtures with block polymers, the overwhelming focus to date has been the use of attractive interactions to localize hydrophilic NPs within the hydrophilic portion of block polymers. Related lipophilic approaches often place NPs at the block polymer interface. Here, a new modality for block polymer–NP control is developed that rather relies upon repulsion via the fluorophobic effect. Fluorinated species strongly associate via repulsion from nonfluorinated media. Here, fluorinated NPs are made with ligand mixtures for granular control over the strength of the fluorophobic effect. Small‐angle X‐ray scattering data reveal that all F‐NPs readily phase separate from polystyrene whereas increasing fluorophobic strength enables dispersions within a fluorinated homopolymer. Next, the F‐NP placement within diblock polymers is investigated as a function of the fluorophobic strength. Weakly fluorophobic F‐NPs are found predominantly near the diblock interface whereas strongly fluorophobic F‐NPs are found to disperse throughout the fluorinated block. The controlled placement of NPs is an emerging way to self‐assemble materials.more » « less
-
Armas, Jeremy_A; Reynolds, Karina_J; Marsh, Zachary_M; Fernández‐Blázquez, Juan_P; Ayala, Denzel; Cronin, Adam_D; Del_Aguila, Jeremy; Fideldy, Rikki; Abdou, John_P; Bilger, David_W; et al (, Macromolecular Rapid Communications)Abstract The directed assembly of conjugated polymers into macroscopic organization with controlled orientation and placement is pivotal in improving device performance. Here, the supramolecular assembly of oriented spherulitic crystals of poly(3‐butylthiophene) surrounding a single carbon nanotube fiber under controlled solvent evaporation of solution‐cast films is reported. Oriented lamellar structures nucleate on the surface of the nanotube fiber in the form of a transcrystalline interphase. The factors influencing the formation of transcrystals are investigated in terms of chemical structure, crystallization temperature, and time. Dynamic process measurements exhibit the linear growth of transcrystals with time. Microstructural analysis of transcrystals reveals individual lamellar organization and crystal polymorphism. The form II modification occurs at low temperatures, while both form I and form II modifications coexist at high temperatures. A possible model is presented to interpret transcrystallization and polymorphism.more » « less
An official website of the United States government
